
Element is relation: A postscript to the "Order without orientation" 

 

Group theory is known to have an interesting property called Cayley's  theorem. 

Cayley's  theorem:  Every group is isomorphic to a permutation group.  In particular: 

For each element a of G, let fa be a function fa:G→G  such that fa(x) = a∙x.  Each such function 

is a permutation from G to G.  Let G' be the set of all such permutations.  And, let ∘ be the 

function composition.  Then, <G', ∘> forms a permutation group such that it and <G, ∙> are 

isomorphic with the isomorphism f: G' G such that f(fa) = a. 

Ying theory exhibits a similar property.  For the ease of discourse, let me call it Mobiusness theorem.  

Theorem 22 

Mobiusness theorem: Let γ be an equivalence relation on Y2 such that <a,b> γ <c,d>  iff a:b 

= c:d.  Let :: be a binary operation on Y2/γ such that [a,b] :: [c,d] = [(a:b),(c:d)].  ([a,b] 

denotes the γ-equivalence class generated from <a,b>.) <Y2/γ, ::> forms a ying such that it 

and <Y, :> are isomorphic with the isomorphism f: Y2/γ Y such that f[a,b]=a:b. 

Because of these properties, in each theory, a strange sort of identity or indiscernibility is obtained 

between elements of a model and a certain kind of binary relation on it.  (A permutation fa:G→G is a 

binary relation on G, and so is an equivalence class [a,b]∊ Y2/γ.)  Once you realize the total structure 

of a model, even the distinction between an element and a (certain type of binary) relation loses its 

absoluteness or inherentness, and becomes looking like an indexical distinction of some sort.  

Locally, the distinction appears to be absolute, but globally, it appears to be relative, in particular, 

relative to "us," our arbitrary fixed local distinction.  It is because of this that I initially named this 

property of the ying theory Mobiusness (although the analogy is obviously not perfect), long time 

ago when I knew nothing about group theory or Cayley's  theorem.1  

This similarity temps us to wonder whether Cayley's  theorem and Mobiusness theorem are 

equivalent for any binary operational theory, that is, whether, for any theory Γ of the following type, 

Γ admits of its version of Cayley's  theorem iff it admits of its version of Mobiusness theorem.   

A binary operational theory:  Let Γ be a theory whose definition makes use of no other 

non-logical notions than a binary operation ∙ and the equality =.  (The definition contains no 

predicate except the equality and no individual constant.)  We call such Γ a binary 

operational theory. 

                                                           
1
 I first discovered that both <Z, -> and <Q+, ÷> exhibited Mobiusness, and realized intuitively that they were 

"form-wise identical."  This was sometime from 2001 to 2003, when I was studying logic and mathematics by 
myself.  I studied abstract algebra and learned about the Cayley's theorem sometime in 2006.  My memory 
cannot be trusted, but I think that the idea of axiomatizing the theory of which these two structures are 
models somehow never occurred to me before, and the current attempt ("Order without orientation") is my 
first attempt to axiomatize the theory. 

http://rethinkingmind.weebly.com/order-without-orientation.html
http://rethinkingmind.weebly.com/order-without-orientation.html


At least, group theory admits its version of Mobius theorem.  However, Ying theory proves not to 

admit of its version of Cayley's  theorem.  <Y', ∘> is not a ying because fa∘fe ≠ fa.  (Note: fe is not the 

identity permutation but the e-inverse permutation.) 

However, Cayley's  theorem may be modified as follows: 

Modified Cayley theorem: For each element a of G, let fa be a function fa:G→G  such that 

fa(x) = a∙x.  Each such function is a permutation from G to G.  Let G' be the set of all such 

permutations.  And, let ∘ be a binary operation on G' such that fa∘fb = f(a∙b).  <G', ∘>, which is 

no longer a permutation group, still forms a group such that it and <G, ∙> are isomorphic 

with the isomorphism f: G' G such that f(fa) = a. 

Ying theory admits its version of modified Cayley theorem.  And, this modification of Cayley 

theorem leaves intact the original theorem's similarity to Mobiusness theorem.  I do wonder 

whether this modified Cayley's  theorem and Mobiusness theorem are equivalent for any binary 

operational theory. 

I also wonder how, in a binary operational theory, the following theorem is related to modified 

Cayley theorem and Mobiusness theorem.  (The following is in a sense a theorem-schema, in the 

sense that it is not described as a theorem proven of any definite theory, but as a possible theorem 

that any theory with a binary operation may admits.) 

Bidirectional eliminability theorem:  (We assume that we are now talking about a 

hypothetical theory Γ with a binary operation ∙.)  a∙x = a∙y ⇒ x=y    and     x∙a = y∙a ⇒ x=y.   If 

Γ admits this theorem, we say that the binary operation ∙ is bidirectionally eliminable. 

In particular, I wonder if admitting this theorem is equivalent, in a binary operational theory, of 

admitting its version of modified Cayley theorem and Mobiusness theorem.  At least, both group 

theory and ying theory admit their version of this theorem. 

One thing is obvious to me, as of now.  If the binary operation ∙ of any theory Γ is bidirectionally 

eliminable, the table that describes the behavior of ∙ (Γ's version of group table) would be a smallest 

exhaustive permutations table. 

Smallest exhaustive permutations table:  Let M be a set {a1, a2, a3, …}.  (M may or may not 

be finite.)  Let X be a set of permutations f from M to M.  We can represent X by a table such 

that each row represents a permutation f∊X such that f(ai) is given in the i-th place of f's row.  

We call such a table X's permutations table.  X's permutations table is exhaustive if each 

element ai of M appears in each of the j-th place of the permutation at least in some 

permutation f in X.   The table is a smallest exhaustive permutations table if each element ai 

of M appears in each of the j-th place exactly once. 

 It seems to me that for a binary operational theory Γ, it may be necessary and sufficient for Γ to 

admit its version of modified Cayley theorem and Mobiusness theorem that the Γ table is a smallest 

exhaustive permutations table. 

But I need proof.  


